LG Bulkhead Reinforcement Preparing Strut Attach Tab
Landing Gear Cover Axles, Brakes & Brake Lines Landing Brake
I had decided early on to install the electric landing brake, therefore, this is going to be the first moving component made on this project. I ordered Wayne Lanza's speed brake kit before I started Chapter 9 and it has been sitting on the shelf waiting for me to get to this point. Chapter 9 is a looooong chapter!
The
first step is to cut loose the landing brake with a hand-held hacksaw blade.
Since I trimmed the glass before it was fully cured in Chapter 7, I do not have
to do this step. If you didn't do that, well, have fun....
LB-19 and LB-23 are pretty straight forward. I made all the straight and 45o cuts with my table saw and the recess cut with my router. Then I cut up the 10" piano hinge, the 4 aluminum slugs and made LB-18 all in one session.
I found a minor conflict regarding the 10" piano hinge, the bill of material called for MS20001-P6 (Ch.2 p.3) while the instructions called for MS2001-P5 (Ch.9 p.9). I didn't catch it until I was trial fitting the LB-23 in the foam slot. The LB-23 hit bottom while still protruding above the fuselage on the top. Turned out P5 is about 1/4" narrower than P6. So I just trimmed down the hinge with the band saw and made to fit.
[Hind sight: I should have confirmed the measurement with my actuator, because 3/4" to the right will put the actuator right at the center. Now, I am 1/4" too far to the right (off center), but no harm done.]
I did not 5 min epoxy the slugs until I was able to do the first trial fit. |
I did not use the plan method to find the forward edge of the front seat back (with nails) because I already marked the location of the instrument panel, heat duct etc. on the bottom of the fuselage when I was installing the antennae. I think I was locating the landing light position such that I can route the antennae around it. I also marked the position of the instrument panel such that I can feed the antennae coax cables right up the aft face of the instrument panel. In addition, the seat back position was re-visited when I was installing the safety belt positions (Ch.8 p.2 fig.10). Per Ch.6 p.1 fig.3, the instrument panel is 19.25" and the front edge of the front seat back is 40" from F-22 respectively. Thus, front seat back is 20.75" from the instrument panel.
|
|
Floxing LB-19 onto Landing Brake |
I prepared the flox and spread on the mating surfaces. Then I clamped the hinge and LB19 to the landing brake on a rigid flat surface. Left it to cure overnight. |
Slugs Preparation |
|
Micro LB-23 in Place |
If you look close, you can see the round hole I put in with my aggressive router (earlier). I followed Susann's advice and made a 4 ply BID disc and plugged the hole, followed with peel ply. Will see how it turns out in the morning! [Hindsight: It turned out OK the next morning.] |
Once the LB-23 is microed in place, I removed the door and prepped the foam surface. To remove the 1/8" foam throughout, I used the router, Dremel as well as muscle power. For the 45o slope along the PVC foam, I first marked the 1/8" width (of foam to be removed). Then I used a 90o router bit, set its depth and ran it along the pre-marked line. It turned out OK. Lots of dust though.
Fitting the Electric Actuator |
I used CorelDraw (a graphics program) to lay out the positions of the hinge (center of small circle at bottom left) and the path of the LB-18 bracket hole (small circle @ 4" radius). Then I drew a straight line joining the hinge (center) to LB-18 path (vectors) that defines the 0o (i.e. the landing brake at closed position). Their relative positions can be found in M-13. Then I drew additional vectors indicating the landing door at 60, 70, 80 & 90 degrees (multiple line radiating from center of small circle). Then I drew out the relative location of the map pocket and profile of front seat back - the 2 sloping lines. Their dimensions can be found in M-13.
Now I drew 2 concentric circles 8.5" and 12.5" in radius (the 2 large circles) - that's the path of the actuator at fully closed and fully extended positions. I added a cross-hair at the center of the circles as well - that is the attach point (hole) at the base end of the actuator. I combined the 3 into a single object (that's a CorelDraw function). By moving the 'Object' around making sure that the small concentric circle always intersects the landing door path at 0o, then the large circle (intersecting the path) will indicate the angle of the door when the actuator is fully extended. The cross-hair will be the position for the mounting hole for the base of the actuator.
This method gives you unlimited actuator mounting positions - of course, some are better than others. I made slight modifications to the dimensions for my Cozy and determined my optimal mounting position. This worked out well for me because I did not have to hunt for my optimal mounting position under the fuselage. I was rewarded with 65o opening on my second trial. Theoretically, you can get from 0 to 90o with the 4" actuator, however, you'll be pushing against LB-18 in such a odd position, I wouldn't attempt it. In my view, I don't think you can get better than 70o practical mounting position with the 4" actuator extension. |
Trial Fit Landing Brake |
I followed the plans dimension and started the actuator hole through the fuselage at 3.5" aft of the hinge center. Since I am using the electric landing brake, I did not have to cut the long slot per plan. After several trial and errors, the actuator slot ended up to be a bit under 3" from the hinge center, 2 1/4" in length, with a width of 1 3/8" at the narrow end and 1 3/4" at the wide end (to accommodate the nut and bolt).
I marked the map pocket, the actuator mounting hole location against the seat back brace, and the actuator pivot location. Then I hot glued the actuator brackets to the door and the actuator mount against the seat back brace per above calculations. I connected the actuator bolts at both ends and flipped on the switch. The door opened slowly and steadily. I was able to get a 65o max door open angle. |
Glassing the Landing Brake Depression |
|
Mounting the Actuator |
|
[Hindsight]
With my installation of the Vertical Power Electronic Breaker System (Chapter 22), I have to re-visit this page. Due to various reasons, my electrical system requires position feedback from the landing brake actuator. At this point, I have two choices. The first one is to replace Wayne Lanza's actuator with a new one that has a build-in position feed back. The second option is to add an external feedback to work with the system.
The sensible approach is to replace the Lanza's actuator. However, I searched all over the internet and was not able to find a feed-back actuator that has the 4" travel AND has the same physical length. The added 1 3/4" added length requires me to move the anchor point for the actuator. In addition, I have to remake the actuator cover (Chapter 24_7) to accommodate the new actuator position.
|
|
It has been discussed in the Cozy Forum that, we forgot to retract our landing brake during take off or go-around situations. This leads to over heating and much reduced climb performance. To eliminate that oversight, a sensor, installed at the full throttle location, can remedy that situation. Most builders mount a limit switch as a trigger. Due to the tight space at throttle quadrant, I need a much smaller sensor.
|
As I pushed my throttle lever forward to full power (during take off or go-around), the embedded magnet will come into close proximity of the Reed switch, which in-turn triggers the switch, resulting the retract of the landing brake. |
![]() |
Apply flox to the back side of hinge - this is delayed, because it would be difficult to remove the landing brake once the hinge is floxed in place. [Follow up] While I was working on Chapter 16, I had the fuselage up side down again. By then, I have opened and closed the landing break many times. So... I took the opportunity and floxed in the back side of the hinge to LB23 as needed.
|
LG Bulkhead Reinforcement Preparing Strut Attach Tab
Landing Gear Cover Axles, Brakes & Brake Lines Landing Brake